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Abstract

The classic model of a one-dimensional thermoelastic rod suspended between a hot and cold wall is revisited. In this
model, the rod is held in place at the cold end, while at the hot end it is allowed to separate from or make contact with
the wall. When the model includes the contact and gap dependent thermal boundary condition known as the Barber
condition it serves to illustrate the well-known thermoelastic contact instability. All previous studies of this instability
have focused upon the symmetric case where, as a control parameter is varied, the system undergoes a pitchfork bi-
furcation. That is, a new pair of linearly stable steady-state solutions bifurcate symmetrically from a previously unique
solution which has changed from stable to unstable. Here, it is shown that this behavior is not generic. Rather, for
typical contact resistance functions, a fold bifurcation is encountered. This represents a generic unfolding of the classic
pitchfork bifurcation and contains the pitchfork as a special case. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In their now classic paper, Barber et al. (1980), investigated the effect of thermal contact boundary
conditions in a one-dimensional model of a thermoelastic rod. Motivated by the numerous applications in
which thermoelastic contact problems arise (see e.g. Lee and Barber (1993), Richmond et al. (1990) and
Srinivasan and France (1985)), and directed by Barber’s earlier realization that the solution of such
problems posed difficulties (Barber, 1978), the trio demonstrated that when the physically realistic
boundary condition introduced by Barber (1978), was imposed, the one-dimensional model underwent a
bifurcation. In particular, as a control parameter proportional to the applied temperature gradient in the
model was varied, the system underwent a bifurcation from a unique linearly stable steady-state solution to
multiple solutions with alternating stability. In their analysis, a symmetry in the contact resistance function
was assumed. As a result, the bifurcation uncovered was of the pitchfork type.

Since the original study, numerous authors have continued the investigation of the thermoelastic con-
tact instability. Various authors have explored the effect of geometry by for example considering contact
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between a layer and a half plane (Yeo and Barber, 1991), or a strip and a rigid wall, (Yeo and Barber, 1995),
or between two cylinders in cylindrical geometry, (Zhang and Barber, 1993; Noda, 1984, 1985, 1987). Other
authors have focused on the technologically important case of thermoelastic instability in sliding contact
(see e.g. Lee and Barber (1993), Barber et al. (1985), Azarkhin and Barber (1986), Johnson et al. (1988) and
Zagrodzki (1990)), while still others have explored the effect of changing material properties (Zhang and
Barber, 1990; Joachim-Ajao and Barber, 1998; Li and Barber, 1998). The mathematical theory of ther-
moelastic contact models has also undergone development with several authors investigating existence and
uniqueness questions (Andrews et al., 1993; Rivera and Racke, 1998; Lin, 1997; Shi and Shillor, 1993). Still,
other authors have returned to plumb the depths of one-dimensional models. In Barber (1981), multiple
coupled one-dimensional rods were considered as an approximation to three-dimensional bodies. In Barber
and Zhang (1988) and Cheng and Shillor (1993), the case of two one-dimensional rods in contact was
shown to produce oscillatory solutions. Finally, in Pelesko (1999, 2001), the second author developed a
nonlinear stability theory for one-dimensional thermoelastic contact models.

Despite the intense interest in these problems, all of the studies mentioned above and to the author’s
knowledge all such studies, have failed to mention the fact that the pitchfork bifurcation is not generic.
That is, in order to obtain a bifurcation which characterizes the thermoelastic contact instability, it is
necessary to vary some parameter in the problem. Usually, this parameter is proportional to an applied
thermal gradient (Barber et al., 1980), or perhaps to the sensitivity of the contact resistance function
(Pelesko, 1999, 2001). However, the contact resistance function, R, is always the key factor as this is what
determines how rapidly heat conduction through contacting surfaces changes as a function of contact
pressure or distance between those surfaces. As the bifurcation parameter is varied, the multiplicity of
steady states undergoes a change according as related changes in the contact resistance function. An as-
sumption of symmetry for the reciprocal contact resistance function, i.e., F =1/(1 + R), leads to a bi-
furcation of pitchfork type. However, there is no physical reason to expect such symmetry and in fact, in
general, one expects quite the opposite.

In this paper, we investigate the implications of asymmetry in the reciprocal contact resistance function.
We show that the pitchfork bifurcation is not the generic bifurcation associated with the thermoelastic
contact instability. Rather, we show that the instability is more appropriately characterized in terms of
a fold bifurcation, of which the pitchfork bifurcation is a special case. We begin, in Section 2, with a
statement of the one-dimensional model to be considered. We discuss the contact resistance function and
physically reasonable assumptions about its nature. We review the linear theory for this model and
highlight differences which arise due to an asymmetric reciprocal contact resistance function. In Section 3,
we develop a weakly nonlinear stability theory for the generic case. We employ the method of multiple
scales or “two timing” in the development of an asymptotic scheme which incorporates stabilizing non-
linear terms into the linear theory (see e.g. Kevorkian and Cole (1996) and Matkowsky (1970)). Finally, we
use this theory to discuss the history dependence and dynamic evolution of solutions to the one-dimen-
sional rod model.

2. The model

We consider a one-dimensional thermoelastic rod suspended between two rigid walls as pictured in
Fig. 1. We assume the rod possesses constant thermal and elastic material properties, is homogeneous
and isotropic and that uncoupled quasi-static thermoelasticity is valid. Our governing equations in di-
mensionless forms are:

00 %0

E*@, 0<x<l, (la)



D.D. Quinn, J.A. Pelesko | International Journal of Solids and Structures 39 (2002) 145-157 147

Cool Wall Hot Wall
=0 r=1 =1
Thermoelastic Rod @
Barber condition >
applied here
I ||
Fig. 1. Sketch of the model geometry.
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Here, 0 is dimensionless temperature, and the coupled thermoelastic problem has been reduced to a purely
thermal one by solving the elastic equations exactly. The remaining remnant of the elastic problem is the
variable # which measures the gap size between the rod and the right hand wall during periods of separation
(n > 0) and contact pressure during periods of contact (1 < 0). R(n) is the contact resistance function and p
is a dimensionless version of the coefficient of thermal expansion and is proportional to the temperature
difference between the right and left walls. Note that the rod is assumed to be held at a fixed cold tem-
perature at the left, Eq. (1b), while at the hot right wall we have imposed the Barber condition, Eq. (1c). For
a full derivation of these equations, including scaling and the exact solution to the elastic problem, the
reader is referred to Pelesko (1999, 2001).

2.1. The contact resistance function

The key to understanding the thermoelastic instability lies within the contact resistance function R(1).
While the concept of contact resistance is intuitive, its experimental and mathematical characterization is
rather difficult. Intuition corresponds to a mental picture of heat transfer between contacting surfaces.
First, if two bodies are not in contact, heat transfer between them will take place due to radiation and
convection, while once they make contact heat transfer will be dominated by conduction. Hence, that R
should be a function of gap size or contact is easy to see. Once contact is made, the heat transfer by
conduction is a function of the surface area of contact. Due to asperities on the microlevel, the actual
surface area of contact is but a fraction of the nominal contact area. Further, as the contact pressure
between two surfaces is increased, elastic or plastic deformation occurs leading to an increase in the actual
surface area of contact. Hence, it is also intuitive that R should be a function of contact pressure. How to
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determine the actual functional form of R is not nearly so clear as the intuition behind it, despite its critical
role in evolution of thermoelastic systems (Andrews et al., 1993). Due to the technological importance of
this concept, much research has been directed towards its understanding. The reader is referred to Sridhar
and Yovanovich (1994), and Lambert and Fletcher (1997a) for reviews of this complex field. Also, Wil-
liamson and Majumdar (1992) and Lambert and Fletcher (1997b) serve as introductions to the modeling
and experimental verification of models of the contact resistance function. A perusal of these articles reveals
that there is little agreement as to the functional form of R and perhaps more importantly that this
functional form can be a strong function of the contacting materials and surface roughness. For our
macroscopic study however, it is sufficient to extract several properties that any R must possess. We
summarize them as:

Definition 2.1. A contact resistance function R(#) is a function satisfying:

* R(n)=0 Vu

e lim,__ R(n) =0;

e lim, . R(n) = oc;

e R(n) is a monotonically increasing function of #.

The limiting behavior of R is best understood by recalling that # — —oo corresponds to infinite contact
pressure, while 7 — oo corresponds to infinite gap. As it will also be convenient to work with the reciprocal
contact resistance function, defined by

1

F(U)ZTR(W)'

(2)
We summarize the properties of F as well:

Definition 2.2. A reciprocal contact resistance function, F(#), also called the contact conductance, is a
function satisfying:

F()=0 Vo

lim, . F(n) =1;

lim, o F(17) = 0;

F(n) is a monotonically decreasing function of #.

Notice, that no smoothness properties have been assumed for R or F. In general, neither need be smooth. In
fact, at the transitional point between contact and separation, n = 0, there is often a discontinuity in the
slope of R(n). However, in the analysis which follows, we shall assume differentiability of R and F as
necessary.

2.2. Linear theory

In this section we review the linear theory for our model, Egs. (1a)-(1d), and point out precisely which
assumptions lead to a pitchfork bifurcation versus a fold type bifurcation. To begin, the steady-state so-
lution is determined by setting time derivative to zero in Eq. (1a) and integrate the resulting ordinary
differential equation, yielding:

0" (x) = A"x + B". (3)
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Applying the boundary condition at x = 0, Eq. (1b), implies that B* = 0. Application of the boundary
condition at x = 1, Eq. (Ic), yields:

1 0

A* = 5 * = — —A*’ 4

1+Ro) T T2 4

and solutions to this equation determine the equilibrium value of 4*. Note that in terms of the contact
conductance, this equilibrium condition may be rewritten as:

A =F), =54 (3)

The equilibrium solutions are easily uncovered by graphical analysis. In Fig. 2, we plot the left and right
hand sides of Eq. (5) to illustrate this fact. Given the previous definition of the reciprocal contact resistance
F(n), it is straightforward to show that at least one intersection exists. In Fig. 2, we have purposefully
sketched these equilibrium conditions to produce a single intersection. It is easy to imagine however, that if
the slope of F at the intersection were steeper, multiple intersections could occur. Such a situation is pic-
tured in Fig. 3. This is precisely the bifurcation uncovered by Barber et al. (1980). A closer look at this
situation is in order. We assume that at a specific value of y, say u = p,, there exists an intersection and
hence an equilibrium solution at n* = n,. As pictured in Fig. 3, the new solutions occur symmetrically about
1o- That is, one new solution satisfies #* > 1, while the other satisfies n* < 7,. Such a scenario will be the

Fig. 2. Sketch of the left and right hand sides of the steady-state equation.

|
S
3

Fig. 3. Sketch of the left and right hand sides of the steady-state equation showing multiple intersections positioned symmetrically
about n* = n,.
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T
=

Fig. 4. Sketch of the left and right hand sides of the steady-state equation showing multiple nonsymmetric intersections. Notice that in
this figure both equilibria which arise from the bifurcation appear on one side of * = .

case if the intersection at n* = 5, is an inflection point for F. This corresponds to a pitchfork bifurcation.
But, why must this be the case? The transition could in fact occur as pictured in Fig. 4, with the new so-
lutions asymmetrically distributed about #* = #,, or in fact both new solutions might appear above or
below #* = y,!

To clarify further, we study this bifurcation locally by expanding F(5*) in a Taylor series about n* = #,,
where 7, is assumed to be an equilibrium solution which occurs for u = u,. Retaining up to cubic terms
yields:

FO) ~ F) + F )0 —n0) + F ) 100 o) 0 ©)

Now, using Eq. (6) in Eq. (5) and solving for #*, yields either #* = #,, as expected, or two new solutions:

1 " 2 !
L ] 0
with:
zgzgi' .
n n=Mno

In terms of 4*, these solutions are represented as:

dea s R (3R P48 |
— 40 E" E" 3 F 2 :
Kot Hotp Kol

Here the quantity (pFy)/2 is a convenient bifurcation parameter controlling the number of equilibria.
Physically, it represents the sensitivity of the contact conductance at the steady-state solution 0" (x) = Ax.
Now the unfolding of the bifurcation becomes clear. We have three solutions for #* when the argument of
the square root in Eq. (7) is positive. If /i = 0, then #, is an inflection point for F and the bifurcation occurs
at (uyFy)/2 = —1. The bifurcation diagram for different values of F; is depicted in Fig. 5.

Next, we investigate the linear stability of the steady solutions 0"(x) = 4*x. Accordingly we seek a so-
lution to Egs. (1a)—(1d) in the form:

0(x, 1) = A"x + p(x)e ", (8)
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Fig. 5. Bifurcation diagram for different values of Fj', with 6 = —(uF;)/2. Stable branches of equilibria are indicated by a solid curve,
while unstable branches are shown dashed.

where |$(x)| < 1. Inserting this ansatz into our governing equations, expanding the nonlinear terms in
Taylor series, and omitting quadratic and higher order terms in ¢, we obtain the eigenvalue problem:

i—‘f +22¢ =0, (9a)
$(0) =0, (9b)
(1= F(r) (1) + 1 () / $(0) dC+ F(r)p(1) = 0. (%)

Notice that we have written this in terms of the contact conductance F. This linear eigenvalue problem has a
solution ¢(x) when 4 satisfies:

(1 = F(1')) A cos(A) + uF' (") (1_3"30)> + F(y) sin(2) = 0. (10)

The solutions of this equation in conjunction with Eq. (8) determine the stability of the perturbation ¢; if
Re(/?) > 0 (<0), then the steady-state solution is linearly stable (unstable). This characteristic equation, in
an equivalent form, was studied by Barber et al. (1980); we do not repeat his analysis here. Rather, we
simply note that in our notation, the results of Barber indicate that the equilibrium 6*(x) = A*x is as-
ymptotically stable (unstable) if F'(n*) > —2/u (<) and is marginally stable for F'(n*) = —2/u. As the
stability boundary always occurs for F’(*) = —2/u, independent of F”(n*), we may deduce linear stability
for equilibria through a graphical analysis of Figs. 2-4. If F (1) crosses the line defined by (—2/u)#n from left
to right, the resulting equilibrium point is stable. However, if the crossing is from right to left, the equi-
librium point is unstable. The stability results are summarized in Fig. 5.

3. A nonlinear theory

In the previous section we found the steady-state solutions for our model and investigated their linear
stability. The linear analysis, developed from Egs. (7) and (10) and summarized in Fig. 5, indicates that as a
suitable bifurcation parameter is varied, a fold bifurcation occurs generically, with the pitchfork bifurcation
identified by previous authors as a special case. The quantity F” was used as the unfolding parameter. In
addition, it was seen that equilibria are unstable for F'<—2/u. When an equilibrium solution is unstable,
the linear theory predicts that any infinitesimal perturbation will grow exponentially with time. Clearly, the
linear theory is expected to be valid only for a short time. In this section, we extend our analysis using the
method of multiple scales to account for the effects of nonlinearities in the governing equations. That is, we



152 D.D. Quinn, J.A. Pelesko | International Journal of Solids and Structures 39 (2002) 145-157

investigate the behavior of solutions near a marginally stable equilibrium through introduction of the
scalings:

2
FE; = __+82f(;7

Ho (1)
FE;/ — 8 (;/,
Fb/”: 0///.

For ¢ = 0, the equilibrium at n* = 5, is marginally stable, so that ¢ characterizes the distance of the system
to the bifurcation described above. For ef)’ = 0, recall from Eq. (6) that #* =y, is an inflection point of
F(n) and, as described in Eq. (7), the system exhibits a pitchfork bifurcation as the quantity &/, passes
through zero. For f # 0, n* = 1, is no longer an inflection point of (), and we find that the bifurcation is
of the fold type as illustrated in Fig. 5. Moreover, the fold bifurcation occurs at u = u, + A, where:

2|30 s
Elo | T — 2

A=

5 30 S !
1+8 ﬂ0|: 16(}01// _70

and represents the generic unfolding of the pitchfork bifurcation as seen in Fig. 5, with the unfolding
parameter being f'.
We begin the nonlinear analysis by expanding the bifurcation parameter p as a series in &:

p= g+ ey + s+

In what follows the system will be assumed to be neutrally stable when u = y,, that is, for ¢ = 0. Thus ¢
characterizes the distance, in terms of the bifurcation parameter y, from neutral stability. A multiple scales
analysis requires that time is stretched as:

th=t t=¢, bL==ct ...,
and both 0 and n are expanded in &:
0(x,1) = Op(x) + &0y (x, 1) + 205 (x, 8) + - - -,
n(t) = no +eny (1) + (1) + - -

Finally, the reciprocal contact resistance function F(y) is expanded in ¢ about #,, and with the introduction
of the scalings defined in Eq. (11), to @(¢®) this becomes:

1! 1
F(n) =Fy+ (Fyn))e+ (Fym,) e + (fo’m +7°fﬁ +‘%n? +Fém>83 +oee

so that f;, fi, and f;" characterize the Barber condition near the marginally stable state. These expansions
are introduced into Egs. (1a)—(1d) and terms are collected at each order in &:

0(£°)
00, %6, B
% o 00(0,1) =0,
00,
(1= ) S0 10 = B~ 0,(1.0),

1
Ny = _MO/ 00(x7 t) dxa
0
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O(e")
o0, 00, 0, -
a—ﬁ+a—t()—@7 01(07t)—0,
20 o0
(1= 5 G (L) + R (1) = () (G (1) + 1= 0(1.0)),

m=—uo/ el<x,z)dx—u1/ 00 (x, 1) d
0 0

(9(82)
a0y 20, 0, _ 0,
o, o4 Oty o2’

S (10) + Ra(1,1) = (Fo’m)(aael(l 0 - 0,(1, )) " (F(;m)(aa@"(l 0+ 101, t)>

nzz—u()/ Hz(x,t)dx—ul/ el<x,r>dx—ﬂ2/ 6 (x, 1) dx
0 0 0

O(e)
80y | 00, 00, a0; 0%0s
o, Ot o oty o2’

(1= F) G210+ A 0010 = () (52 1.0 = 02010 ) + o) (G010 = on1.) )

6,(0,¢) =0,

(1-F)

03(0, l) = 0,

, /4 11 , 60
+ (fom M e +Fo'73> ( 60(1 1)+ 1 — 0(1, t)>

1 1 1
m=-t [ Ostrdr—p [ Hz(xvf)dxfﬂz/ 0wy — s [ Oufr, o)
0 0 0 0

The multiple scales analysis proceeds by solving these equations in turn at each order in ¢. Therefore we
obtain a series of linear variational equations. To ensure that solutions are nonsecular, that is, they do not
grow in time, we remove secular terms by appropriate choices which ultimately determine the nonlinear
stability of the system.

To lowest order, the dominant solution is given as 6y(x, ) = Aox, where:

Ay = F(n,) = constant, 1y = — = Ao,

with 0<A4y<1. Therefore using this lowest order solution one can identify 4, the thermal gradient, with #,,
the nondimensional variable related to the thermal expansion.

At the next order we again assume a separable solution. We find that the eigenvalues of the characteristic
equation are nonpositive, so that all solutions decay exponentially, with the exception of the solution of the
form:

Hl(x,t) :Al(tl,fz,t3, .. .)X.

The coefficient 4 is allowed to vary on timescales of order #; = ¢t and slower. In the sequel we will denote
this dependence as A4;(#). The notation will explicitly contain only the fastest timescale dependence, the
remaining slower timescales are suppressed for clarity. This solution corresponds to the eigenvalue at the
origin and leads to the solvability equation:
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[1 +%F(;}A1 + [%F(;}AO = 0.
This equation is satisfied for all values of 4, provided:
2
F/ = -, H = O
0 o 1

The first of these conditions reflects the neutral stability of the point about which the nonlinear analysis is
being performed, that is, u = p,. The second reveals that a nontrivial amplitude 4; at ((¢) requires that the
detuning of the system from neutral stability be o(e).

At (&%) we find the general solution is of the form:

aAl )C3
Qz(x, t) = Ag(fl)x + a_tl g,
whose solvability equation is satisfied for all values of 4, provided:
04,
—=0 =0.
atl i 253

With this, 4, does not vary on the # timescale, that is, 4; = 4,(t,).
Finally, at O(¢*), the solvability equation reduces to:

5 —44, 04, 04, Ho Ko\ Sy Mo\ 1o 5 s
- e il Poprgy — (2) 20 24 (E0) L0 g3 D3y
0 { B }<6t1+6t2>+{2f01 (5)54+(5) e ek
which is satisfied for 04,/0t; = 0, and:
04, 12 Ho L o2 S0 o B\ Sy 5 M
o, (5—4140){2f°A1 (2) 2A1+(2) 6A1 ,uOAO '

This evolution equation for 4; determines the long-time behavior of the amplitude of 6,(x,¢), the O(¢)
correction to the base solution. This equation can be written as:

04, [(48/10) (24f0’) ( o/ ) 2 3]
=c " H3 — " A + " A - A ?
ot wfy' )7 N ) )

where:
3 pm
R V/ S
4(5 — 44,)

We note that provided f;” > 0 all solutions remain bounded in time (recall 0 < 4, < 1), and the parameter ¢
can be scaled away by an appropriate positive scaling of #,. Without loss of generality we assume that ¢ = 1,
so that the evolution of 4; is determined by the Landau—Stuart equation:

04
W;:ﬁo.‘h — By + P47 — A3, (12)
where:
484 241, 6f)
ﬁ0:4—,?,7 ﬂlz 2 /9/7 ﬁZ: 0///’
Koo Hofo Hofo

The qualitative behavior of 4;(#,) as the bifurcation parameter y; is varied is determined by the parameters
Bo» b1, and fB,. The equilibrium points determined by this evolution equation are identical to the nontrivial
equilibria described by Eq. (7).
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Previous analyses which have focused on the symmetric pitchfork bifurcation can be recovered through
the assumptions 3, = 5, = 0. We see that fi,u; # 0 arises through the physically realistic choice of u as the
bifurcation parameter. Recall that u is the nondimensional coefficient of thermal expansion and is pro-
portional to the temperature difference between the hot and cold walls. The assumption of a nonsymmetric
contact conductance about the marginally stable solution leads to 8, # 0. Each of these effects breaks the
pitchfork bifurcation described in Barber et al. (1980) and Pelesko (2001), leading to a generic fold bi-
furcation. Finally, we note that the bifurcation parameter used in these previous studies, defined as § in Fig.
5 is equivalent to 8, defined above.

4. Discussion

We have revisited the classic model of a one-dimensional thermoelastic rod suspended between a hot and
cold wall. In contrast to earlier studies of this model (Barber et al., 1980; Barber, 1981; Barber and Zhang,
1988; Cheng and Shillor, 1993; Pelesko, 1999, 2001), in this work we have allowed for a more general
representation of the contact conductance function F near the point of neutral stability, including asym-
metry, and have considered p, the nondimensional temperature difference across the walls as the relevant
bifurcation parameter. These previous works assumed a symmetric form for the contact conductance near
the bifurcation and consequently the bifurcation parameter described the functional form of the contact
conductance near the point of neutral stability. The major result of this paper is that these extensions, that is,
the asymmetry and choice of the bifurcation parameter, implied that the generic bifurcation associated with
the thermoelastic instability is a fold type bifurcation, instead of the pitchfork bifurcation identified earlier
(Pelesko, 1999, 2001). We note that this generic behavior contains the classic pitchfork bifurcation as a
special case.

After introducing the model and making physically realistic assumptions about the contact resistance
function, we reviewed and extended the linear theory for this system. We found that the structure of the
equilibrium solutions was controlled by 7', the second derivative of the contact conductance function. In
particular, when Fj’ = 0, we recover the pitchfork bifurcation as ¢ = —(uyFy)/2 varies, while when F;’ # 0,
the equilibria which arise from the bifurcation are nonsymmetrically positioned about the trivial solution.
This is illustrated in Fig. 5. The linear stability of the trivial equilibrium solution shown in Fig. 5 was then
investigated and the stability characteristics were shown to be in agreement with those expected from the
pitchfork case.

Next, we developed a nonlinear stability theory for the generic fold bifurcation. To accomplish this, we
used the method of multiple scales or two timing to obtain a uniformly valid asymptotic expansion of the
solution. This technique yielded the following asymptotic approximation to the solution:

0(x,t) ~ Aox + eA, (% t)x + -+ . (13)
Here, A4, satisfies the amplitude or Landau-Stuart equation:

04

ﬁ; = Botts — P11 + BrA47 — 45, (14)

where i, represents the ((¢*) detuning from the point of neutral stability. We note that all other terms of
O(¢) in the asymptotic expansion decay as time tends to infinity. Hence, the limiting behavior of 0(x,¢) is
given by:
lim 0(x, £) ~ Aox + s[limAl(azt)} x. (15)
t—00 =00
Examination of Eq. (14) reveals the implications of our assumption of asymmetry as well as the choice for
the bifurcation parameter. In particular, the presence of the 47 term depends upon F} while the constant
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term is linear in p;. When both £’ and p; vanish, we recover the Landau equation obtained in the nonlinear
stability theory of Pelesko (2001), and an accompanying pitchfork bifurcation as f; varies. In contrast
when either of these quantities are nonzero, we obtain a generic fold bifurcation. Hence, in addition to
controlling the equilibrium structure, we see that the asymmetry in F effects the nonlinear behavior and
hence the history dependence and dynamics of solutions. Moreover, the contact conductance as well as the
choice of the bifurcation parameter influence the history dependence and dynamics of solutions for the
original thermoelastic contact problem.

Finally, we suggest that the analysis above may be fruitfully applied to other thermoelastic contact
problems. In particular, it would be interesting to examine the implications of asymmetry in the contact
resistance function for multidimensional or multirod problems. We invite the reader to further ponder the
implications of the generic unfolding for other thermoelastic contact problems.

References

Andrews, K.T., Shi, P., Shillor, M., Wright, S., 1993. Thermoelastic contact with Barber heat-exchange condition. Applied
Mathematics and Optimization 28 (1), 11-48.

Azarkhin, A., Barber, J.R., 1986. Thermoelastic instability for the transient contact problem of two sliding half-planes. ASME Journal
of Applied Mechanics 53, 565-572.

Barber, J.R., 1978. Contact problems involving a cooled punch. Journal of Elasticity 8, 409-423.

Barber, J.R., 1981. Stability of thermoelastic contact for the Aldo model. ASME Journal of Applied Mechanics 48, 555-558.

Barber, J.R., Beamond, T.W., Waring, J.R., Pritchard, C., 1985. Implications of thermoelastic instability for the design of brakes.
ASME Journal of Tribology 107, 206-210.

Barber, J.R., Dundurs, J., Comninou, M., 1980. Stability considerations in thermoelastic contact. ASME Journal of Applied
Mechanics 47, 871-874.

Barber, J.R., Zhang, R., 1988. Transient behavior and stability for the thermoelastic contact of two rods of dissimilar materials.
International Journal of Mechanical Sciences 30, 691-704.

Cheng, C.C.-A., Shillor, M., 1993. Numerical solutions to the problem of thermoelastic contact of two rods. Mathematical and
Computer Modelling 17, 53-71.

Joachim-Ajao, D., Barber, J.R., 1998. Effect of material properties in certain thermoelastic contact problems. ASME Journal of
Applied Mechanics 65, 889-893.

Johnson, R.R., Dow, T.A., Zhang, Y.Y., 1988. Thermoelastic instability in elliptic contact between two sliding surfaces. ASME
Journal of Tribology 110, 80-86.

Kevorkian, J., Cole, J.D., 1996. Multiple Scale and Singular Perturbation Methods. Springer, New York.

Lambert, M.A., Fletcher, L.S., 1997a. Review of models for thermal contact conductance of metals. Journal of Thermophysics and
Heat Transfer 11, 129-140.

Lambert, M.A., Fletcher, L.S., 1997b. Thermal contact conductance of spherical rough metals. ASME Journal of Heat Transfer 119,
684-690.

Lee, K., Barber, J., 1993. Frictionally excited thermoelastic instability in automotive disk breaks. ASME Journal of Tribology 115,
607-614.

Li, C., Barber, J.R., 1998. Stability of thermoelastic contact of two layers of dissimilar materials. Journal of Thermal Stresses 20, 169—
184.

Lin, Y., 1997. A nonlocal parabolic system modelling axially symmetric thermoelastic contact of two discs. Journal of Mathematical
Analysis and Applications 210, 39-57.

Matkowsky, B.J., 1970. A simple nonlinear dynamic stability problem. Bulletin of the American Mathematical Society 76, 620-625.

Noda, N., 1984. Transient thermoelastic contact problem in a long, circular cylinder. Journal of Thermal Stresses 7, 135-147.

Noda, N., 1985. Transient thermoelastic contact problem in a short-length circular cylinder. Journal of Thermal Stresses 8, 413-424.

Noda, N., 1987. Transient thermoelastic contact problem in a cylinder with a position dependent heat transfer coefficient. Journal of
Thermal Stresses 10, 57-69.

Pelesko, J.A., 1999. Nonlinear stability considerations in thermoelastic contact. ASME Journal of Applied Mechanics 66, 109-116.

Pelesko, J.A., 2001. Nonlinear stability, thermoelastic contact and the Barber condition. ASME Journal of Applied Mechanics 68,
28-33.

Richmond, O., Hector Jr., L.G., Fridy, J.M., 1990. Growth instability during nonuniform directional solidification of pure metals.
ASME Journal of Applied Mechanics 57, 529-536.



D.D. Quinn, J.A. Pelesko | International Journal of Solids and Structures 39 (2002) 145-157 157

Rivera, J.LE.M., Racke, R., 1998. Multidimensional contact problems in thermoelasticity. SIAM Journal on Applied Mathematics 58,
1307-1337.

Shi, P., Shillor, M., 1993. A quasistatic contact problem in thermoelasticity with a radiation condition for the temperature. Journal of
Mathematical Analysis and Applications 172, 147-165.

Sridhar, M.R., Yovanovich, M.M., 1994. Review of elastic and plastic contact conductance models: Comparison with experiment.
Journal of Thermophysics and Heat Transfer 8, 633-640.

Srinivasan, M.G., France, D.M., 1985. Nonuniqueness in steady state heat transfer in prestressed duplex tubes — Analysis and case
history. ASME Journal of Applied Mechanics 48, 555-558.

Williamson, M., Majumdar, A., 1992. Effect of surface deformations on contact conductance. ASME Journal of Heat Transfer 114,
802-810.

Yeo, T., Barber, J.R., 1991. Stability of thermoelastic contact of a layer and a half-plane. Journal of Thermal Stresses 14, 371-388.

Yeo, T., Barber, J.R., 1995. Stability of a semi-infinite strip in thermoelastic contact with a rigid wall. International Journal of Solids
and Structures 32, 553-567.

Zagrodzki, P., 1990. Analysis of thermomechanical phenomena in multidisc clutches and brakes. Wear 140, 291-308.

Zhang, R., Barber, J.R., 1990. Effect of material properties on the stability of static thermoelastic contact. ASME Journal of Applied
Mechanics 57, 365-369.

Zhang, R., Barber, J.R., 1993. Transient thermoelastic contact and stability of two thin-walled cylinders. Journal of Thermal Stresses
16, 31-54.



